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ABSTRACT

The radiation pattern of a TEM mode thin-walled parallel-
plate waveguide is analyzed by a surface integration technique
in conjunction with wedge diffraction theory., The surface integral
is obtained by the Green's second identity, The fields on the surface
are calculated by plane wave diffraction and first order interactions
between two edges of the guide (which were employed in a previous
pattern analysis by the wedge diffraction method). The surface
integration technique provides an improvement in the accuracy of
the pattern as compared to the wedge diffraction method.
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CHAPTER I
INTRODUC TION

Radiation pattern analysis is a primary tool in the design of
antennas, Consequently, the development and improvement of
methods of analysis are of particular interest to the antenna
designer, Small aperture antennas such as open-ended wave-
guides and slot antennas are of particular interest in applications
for missiles, space crafts, and airborne and reentry vehicles,
The idealized two-dimensional parallel-plate waveguide which
is treated below provides insight into the diffraction behavior of
practical three-dimensional antennas. The research reported
here provides an improvement in the accuracy of the parallel-
plate guide pattern as compared to the wedge diffraction method.

Wedge diffraction theory has been previously applied to
analyze the electromagnetic characteristics of waveguides and

k2,3 Although the wedge diffraction method

hornantennas,
generally gives accurate results, limitations on accuracy occur
under certain conditions, Specifically, in the wedge diffraction
analysis of the radiation pattern of the TEM parallel-plate
waveguide, as shown in Fig., 1, the result is not accurate in

the region near the plane of the aperture especially for guide

widths on the order of \/2 or less.
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Fig. 1. Geometry of parallel-plate waveguide,

The purpose of the development in this publication is to
establish a method of antenna analysis which overcomes the
limitations of previous applications of wedge diffraction theory.
The technique used in the research reported here employs an
integration involving the fields over the surface represented by
the x-axis in Fig. 1, The same basic approach has been used
by Mikuteit® in the analysis of coupling in a three-guide array,

The validity of this technique is demonstrated by the
improved accuracy of the radiation pattern analysis for this
problem as compared with the wedge diffraction analysis, The

basis for the comparison is the known exact solution,



It is believed that this method provides a means for similar
improvement of the accuracy of the radiation pattern analysis for
a waveguide mounted in an infinite ground plane., There is no
exact solution known for this case, The radiation pattern for the
waveguide in an infinite ground plane is now being analyzed and
will be presented in a later publication.

In the wedge diffraction method, the incident plane wave
causes singly diffracted waves to emanate from edges (1) and
(2) as shown in Fig., 1, Doubly diffracted waves are produced
by the incidence of the singly diffracted waves on the opposite
edges, The doubly diffracted wave is approximated as diffraction
by an incident, isotropic, cylindrical wave, This approximation
of the non-isotropic, singly diffracted wave as an isotropic
wave results in the type of above mentioned limitation, The
inaccuracy which results from this approximation occurs
mainly in the regions near the shadow boundary of the incident
cylindrical wave,

Ryan and Rudduck’ have obtained the radiation pattern of
parallel-plate waveguides with arbitrary geometry by including
only the single and double diffraction contributions, Yu and
Rudduck’ have included the third order diffraction contribution
and subsequently employed a self-consistent method which in-

cludes all higher orders of diffraction from each edge, The



radiation pattern obtained by the above analyses have been found to
be satisfactory in general. However, they do not describe the
pattern adequately in the region 60° < 0 < 120° where 6 is defined
in Fig, 1,

In this analysis a surface integration technique will be
employed in conjunction with wedge diffraction theory to improve
the radiation pattern in this region. The formulation of the surface
integral is presented in Chapter II, The validity of this formulation
is tested on an isolated half-plane in Chapter III, Then the radi-

ation pattern of a parallel-plate waveguide is obtained in Chapter

IV using this formulation,



CHAPTER 1I

FORMULATION OF HALF-SPACE RADIATION
IN TERMS OF SURFACE INTEGRAL

In this chapter the radiation into the half-space y > 0 is ex-
pressed in terms of the fields on the planar surface y = 0 as
shown in Fig, 2, Since the two dimensional problem in which the
fields are independent of z is only of interest, the radiation can

be expressed in terms of the fields on the x-axis, Only the TM

case is considered, i, e., the magnetic field is z-polarized,

Fig. 2. Geometry of half-space radiation problem,
The field H, satisfies the wave equation in the region y > 0
2
(1) (v + K)H, =0

2m . .
where k = S is the free space propagation constant, The magnetic



field may be expressed in terms of the free space Green's function

Go, as

OH._ (=} y!
(2) H, = - g‘ Go M y7) - H,(x}0) 9Go dx!
. oy’ ay!
-© yl =0 y':O

where the prime sign (') denotes the source coordinates, Two
choices of boundary conditions of the Green's function at y'=0

are possible for this half-space geometry. These are
(3) Go(x,y;x40) =0

or

PR | !
(4) Mol yix,y') i =0

al
y y1z0

Using either Eq, (3) or Eq, (4), the expression for the

magnetic field H,, is given by either Eq. (5) or Eq. (6),

respectively,
® G
(5) H, =2 S‘ H,(x!0) —> dx'
oy! .
0
-0
(o0}
OH(x)y")
(6) H, = -2 § Gy — ‘ dx’
oy! .
- y =0



Using the asymptotic form of the free space Green's function, valid
for large values of p in the polar coordinate, and the appropriate
far field approximations, it can be shown that

-i(ke+g)
(7) G~ f—

o
vV 8wkp

e+jkx' cos 6

(8) 9Go

~ jk sin 0 Gg
ay!

y'=0

-

Fl -1
where p = (xz+yz)2 and 6 = tan~ L
x

Substituting Eq. (7) into Eq. (6) and Eq. (8) into Eq. (5),
, o+ )
and suppressing the factor ————— , the angular variation, or
y2wkp

radiation pattern, is given by

[v9] N
OH(x'y'") +jkx' cos 6
R, (6) = - 02X, ¥ ) e ,
(9) z(9) S oyt
~C0 y':O
or
@
+ikx' cos 0
(10) R,(0) = Y jksin 8 Hy(x!,0)e " %7 ax |
o

Thus, if either the magnetic field H(x!0), or its normal derivative
i, e, , tangential electric field E(x}0), is known on the surface

(x'-axis), the far field radiation pattern can be evaluated,



A combination of the equivalence principle and the image
theory can also be employed to derive Eqs. (9) and (10). This
can be done by evaluating the equivalent magnetic and electric
currents for the tangential fields on the surface, By use of
image theory for this half-space geomet:ry,5 the radiation into
y > 0 can then be obtained from either twice the equivalent

electric current or twice the equivalent magnetic current,



CHAPTER III

PLANE WAVE DIFFRACTION
BY A HALF-PLANE
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Fig, 3. Plane wave diffraction
by a half-plane,

In this chapter the relationship is shown between the surface
integral formulation, for plane wave diffraction by a half-plane,
and the exact solution, In the comparison process several re-
lationships are derived which are employed in subsequent chapters,

A, Half-Plane Diffraction
Formulation

The problem of straight edge diffraction by a perfectly con-
ducting half-plane was first solved by Somrnerfeld.6 For grazing

incidence of a plane wave with its magnetic field polarized in the



z direction, the total field in the geometrical optics shadow region

(0 < 8 <), as shown in Fig, 3, is given by

(11) H,(p, m+8) = Vpg(p,m+6,2) .

The incident wave is normalized to have unit—a.mplitude,l and
the wedge diffraction function Vg(p,¢,n) for a wedge of angle (2-n)w
is discussed in Appendix A, For a half-plane (i.e., n = 2), the

function Vg(ps &, 2} is given by
$

vy -~ lcos 2 { .
jkp cos
(12) Vlp 2} = & ( 2 ) ke ¢
\/: cos-d—D
2
@® -j'rzd'r
o
akp

where a =1 + cos ¢,
For large values of kp(l +cos ¢), Eq. (12) may be asymp-

totically approximated as

)

NN

(13)  Vplps®:2) ~

2\/21rkp cos %‘

Therefore, the magnetic field for the radiated wave in the region
(0 < 6 < m) is given by
. T
—_](kp + Z)

2wkp

(14) Hy(p, 0) =

2 sin —

10



It is evident from Eq, (14) that the radiated wave appears to
be a directional cylindrical wave radiating from the edge of the

half-plane, Since only angular variations are of interest the factor
-j (kp + ")
e 4

J 2w kp

pattern function

is suppressed, This gives the following radiation

1
(15) R,(0) = 5
2 sin -2- °

B. Surface Integral Representation

The surface integral representation of the far-field radiation
pattern as shown in Eqs, (9) and (10) can be evaluated if the field
is known on the surface S. For plane wave diffraction by a half-
plane, the diffracted field and its normal derivative on the surface

S (y=0) are given by

(

VB(x',1'r+, 2) = — e

1
A

(16) H,(x'0) =

(x' <0)

and

11



oH, (x,y") a9V Fe
(17) "“‘_'—'—‘ - ]_im - Sinq) B(py¢’ 2)
ay . ¢|__,1T+ ap'
y = 2

+..l__’ COS¢' BVB(p:d)',Z))
0!
,
o
J 4 jkx!
o (x! > 0)
Jx
\ 0 (x' <0) .

The integral for the radiation pattern which is obtained by

substituting Eq. (17) into Eq. (9) can be analytically evaluated,

giving
® .= -jkx'(1-cos 9)
J4 e
(18) R,(0) =2 g\ e \/_ dx!
. Xl
0 . I
Ja © .
2 ks
} e S" e du
J2w(l-cos 8) .C \/T
_ 1
2 sin 8
2

Comparing Eq. (i8) with Eq. (15) it is seen that the radiation pattern
function in the shadow region 0 < 6 < m, as obtained by the surface

integration technique, is of course, exactly equal to the exact

solution,

12



From the other boundary condition on the Green's function
as shown in Eq. (3), the integral representation of the pattern

function can be derived by substituting Eq. (16) into Eq., (10),

giving

9] 3 ' _ e
(19) R,(8) = jksin® g‘ % oIl (1-cos 9)
0

0 .
. + '
+ jksin © S‘ e jkx'cos © vg(x', 2w 2)dx' .

-0

The value of the first integral in Eq, (19) can be analytically

evaluated by means of a distributions or generalized function,’
giving
jk sin 6 ® jkx'(1-cos 0)
(20) j ;1n S e J P axe
0

jk sin O w6(k(l-cos 9)) sin 6
) 2 2(l-cos 0)

The second term in Eq., (19) can be simplified by inter-

changing the limits of integration obtaining,

[+
-1 1
(21) jk sin GS g Jkx' cos @ Vg(x', 2w, 2) dx'
0

For values of x' greater than some value x,,, the function

Vg(x',2m, 2) in Eq. (21) can be approximated by the asymptotic

13



expression given in Eq. (13). Thus, Eq. (21) can be written

Xm i
(22)  jk sin®© S' eI oSOy (x1, 2m 2) ax
0

. I
o “}ZT  -jkx'(1+cos 0)
+ jksin© § < © dx!

Xm 2 JZ‘IT kx!

The {irst term is numerically evaluated by computer. The
second term can be analytically evaluated in terms of the Fresnel

integral which is defined as

e 0] —.t
(23)  F(x) = —1—§ e & 4
2T
X

I
B
EL

.
—JZ
F(0) =0.52 e

where

F(®) =0

Consequently, the second term in Eq, (22) is given by

T
i = o _jkx'(l+cos ©
k sin 6 e+J 4 S' e ) ( )

(24) ———— — dx!
2 2wk Xm .'/x’
™ .
sin © 17 ° e It d
= ——— e t
2\/1+cose Kxpn(1+cos 0) Jamt
™
sin © 14

e F(kxy, (1 +cos 0)) .

14



This Fresnel integral will be employed frequently in the next

Y[

chapter to evaluate integrals which decay as x 2,
Using Eqgs. (20) to (24), the radiation pattern function in the
shadow region (0 < © < 7w) as indicated in Eq. (19}, can be

written as

: M it
(25) R,(6) = 2(511_“25) + jk sin 0 S e kX' €080 o i, 2m, 2)ax!
-C
0
™
sin O *j

F(k x,n(1 +cos 9))

+ Y e
2\/1+cose

Numerical results have been computed from Eq. (25) for values
of x,, ranging from two to ten wavelengths and for several values of
the angle theta as shown in Table I. Accuracies of about 0, 5% are
obtained by the numerical evaluation as compared with the exact
solution in Eq, (15), Thus, we can conclude that this method of

calculating the radiation pattern is satisfactory,

TABLE 1
Xm in M
. . ©
Theta in Degrees 1/(2 sin E) 2 5 10
70 0.87172 0. 87199 0,87141 0.87125
80 0. 77786 0.77610 0. 77642 0. 77646
90 0.70711 0. 70598 0. 70640 0. 70654
100 0, 65270 - - 0. 65215

15



This evaluation of the diffracted fields from a half-plane il-

lustrates a method for evaluating the surface integral for which the

s

fields on surface S decay as x 2 and indicates the accuracy of the
numerical evaluation, Since computer evaluation for 0 < x! < xm
is expensive, it is desirable to use as small a value for x, as

practical,

16



CHAPTER 1V
THE RADIATION PATTERN OF A TEM MODE

PARALLEL-PLATE WAVEGUIDE

In this chagter the radiation pattern of the parallel-plate wave-
guide, shown in Fig. 1, is analyzed by the surface integration
technique discussed in the previous chapters, The parallel-plate
waveguide for this problem is formed from two half-planes sepa-
rated by a guide width h, and aligned for a normal truncation angle,

The TEM mode radiation pattern, due to an incident plane
wave propagating parallel to the axis of the guide, with the electric
field polarized perpendicular to the guide walls, is analyzed in the
following paragraph, The exact solution for this particular geometry
has been obtained by the Weiner-Hopf technique as given in Appendix
B.

Because of the symmetrical excitation and geometry, the
pattern is symmetrical with respect to the angle 6, Thus, the
pattern is calculated only in the region 0 < 8 < 7 and consequently,
the surface of integration is chosen to correspond to the x-axis,
(However, if the pattern is chosen in the region -w < 6 < 0, the
surface S corresponds to y = -h,)

The radiation pattern can be calculated using the Green's
function with either one of its boundary conditions (Eqs. (9) and (10)).

However, in the following development, only Eq. (10) will be

17



employed, which is rewritten for convenience,

29}
3 H
(10) R,(6) = g‘ jksin® Hy(x,0) el €©5 @ g1

-0

The magnetic fields H,(x) 0), on the surface S, are calcu-
lated by the theory of wedge diffraction.' Three terms of the surface
field distributions will be considered,

The first term to contribute to the pattern consists of the

diffracted fields (A, B, C) on the surface S, as shown in Fig. 4,

P

SURFACE S

— X

Fig, 4. First term (singly diffracted
waves from both edges).

18



These fields are those of the plane wave diffraction by the isolated

half-planes:

6) A B (x10) = LI (x' > 0)
(1)
(27) B: H; (x,0) = Vp(radz, 2) (x' > 0)
where
ry; = ’hz+x'z <1>z=-121 +tan'1-’%-

and
(28) c: 5V (x0) = ' '

: H) ' (x,0) = Vg(x',2m,2 ) (x' < 0)

The subscript 1, 2 denotes edges (1) and (2) respectively and
the superscript (1) denotes the first order diffraction due to the
incident plane wave,

It is noted that the singly diffracted field on the upper surface

-

S (x > 0) is proportional to x' 2 for values of x' greater than some
value xp,. It can be shown that the sum of Eqs, (26) and (27) for

x! 2 x, is approximately given by

LT
J g -jkx!
e \/—ka e‘]x

Jer o

The singly diffracted field on the lower surface S (x' < 0) is that of

29) B (x0) + M (x0) ®

the isolated halfplane as discussed in the previous chapter,

19



The radiation pattern function Rz(0), due to the singly dif-
fractedfields on the surface S, can be expressed in terms of (1) num-
erical integration over a finite portion of the surface and (2) the
Fresnel integral which represents the integration over the remainder

of the surface (the same technique was used in Chapter III) giving

N

sin 0O j
(30) Rz (0) = —F/————— e F(kxm(l +cos 0))
ZJI + cos 6

Xm ot
+ S“ jk sin 0 e jkx'cos 0 Vg(x', 2m, 2)dx'
0

Xm +jkx! cos O ;
+ g jk sin® e (L e TR Ly Lm0 2)] !
0

3w
+1

ka sinB e 4

/1-cose

The first two terms in Eq. (30) correspond to the lower surface

F(kxyn(l- cos 0))

integration obtained from Eq, (22) whereas the last two terms
represent the upper surface integration,

The next two contributions to the radiation pattern take into
account fields on the surface S, which result from interactions
between the half-planes, The second term to contribute to the
pattern function Rz3(0) consists of the doubly diffracted fields on
the surface S from edge (1) which resulted from the singly diffracted

wave from edge (2). The doubly diffracted fields are analyzed by

20



the wedge diffraction method, ! By this method the singly diffracted
wave from edge (2) is approximated by a uniform cylindrical wave
in order to analyze the doubly diffracted wave from edge (1). Thus,
the effective source for the singly diffracted wave is a line source

located at edge (2) as shown in Fig, 5.

<

SURFACE S

f——— " il

i UNIFORM LINE SOURCE
®

Fig. 5. Second term (doubly diffracted
wave from edge (1)).

The approximation by an isotropic line source is apparent by

examining the plane wave diffracted field in the direction as shown

in Fig. 5.
W

-jkp -l 4
(31)  Vpg(p,90°,2) ~ % ('e )

Vo \Jamk

Therefore, the amplitude of the line source located at edge (2)

3
is™¢ The doubly diffracted field from edge (1) at the surface S,

J4rk

21



is obtained by application of cylindrical wave diffraction (see Appendix

A) and is given by
h,x',
h+| x'l

n
] “j 2 e-jk(h+lx'l) ik

32y O w0y =”
E: Vark  Jh +x]

hlx'| 90° ) hlet] 270°
b2 |+ V =,
x [VB(h+ x'| * 270, B(h+ x'| 450, 2

( 0 (x! > 0)
L ! | Il
- < i _ik(h+ | .kh|x | hlx .
ce T ( IX |) eJ m, Vg m, 2705 2
\JFEJM x|

(x' < 0)

where the superscript (2) corresponds to second order diffraction,

The assumption of uniform cylindrical wave incidence, in the
previous applications of the wedge diffraction theory, does not
accurately give the radiated fields in the region near © = 90° as
will be shown later, The surface integration technique improves
the accuracy in this region since it includes the effect of the non-
isotropic nature of the wave from edge (2).

For |x' [ greater than some value of x,, the doubly diffracted
field in Eq. (32) can be asymptotically approximated by

i -jklxt]
..J _' ]
(2) —e 4 e Il

(33) H, (x',0) ™
m ,x',

Vg(h, 270°,2) (x' < 0)

22



It is noted that Vg(h, 270, 2) is a constant, thus the diffracted

1
2

fields in Eq. (33) is proportional to lx' I Thus, the contri-

bution of the doubly diffracted field from edge (1) on the surface

S, to the pattern function R,5(0), is given by

™

R E
(34) RZZ(e) = fz—e sin ©

Vg(h, 270; 2) F(kxm(l + cos 6))
1 +cos O

+

. ) ., hx!
-eJ 4 \[E sin O S’xm e-Jk(h-*'xl )eJk h+x! e-jkx' cos O

YE2 Jh+x

0

va<—ll’L , 270, z) dx!

h +x'

The third term to contribute to the pattern consists of the
doubly diffracted fields from edge (2) on the surface S. These
fields are calculated in the same way as the doubly diffracted
fields from edge (l1). In this case, the singly diffracted wave
from edge (1) is represented by an isotropic line source at
edge (1). The doubly diffracted fields on the surface, S, from
edge (2) result from the diffraction of the uniform wave from
this equivalent line source as shown in Fig., 6. The doubly dif-

fracted field from edge (2) is given by

. hr,
-1 . .
(2) e 74 o~ik(htry)  Jkpgn,
(35) Hz (x,0) = e

./4‘“1{ 'h + s

hr hr
——2 =22
X VB( v aq 2]+ VB( resl mto,, Z)J

23



I Emm oy 1] 1 1 I —

where

T, = \/ h? + x'2

oy = tan™! X

h .
l/ SURFACE S
L
— 3 UNIFORM > X
LINE SOURCE
h / ~
- l

Fig. 6. Third term (doubly diffracted
wave from edge (2).

For large values of x', the sum of the two Vp functions is
H(2) . N
extremely small. Therefore, H,  (x'0) is assumed necgligible
for x greater than some value xp,.

Thus, the contribution to the radiation pattern function R;4(0),

due to the doubly diffracted field from edge (2), is given by
hr
: G, —
Xm -jk(h+r k
g m ZJ 2) ] h+r, G+jkx’ cos 8

[&]
Jh+r2

.
t) 4

(36) Ry (0) =-k sin® <
4wk

hr hr
-2 — 1
X [VB(h+ - ,0/2,2) + vB(h+rz sTtas, 2 )] dx

24
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TABLE II

0
: o jkx' cos 0
The pattern function R,(8) = S‘ jk sin © e’ Hy(x'0) dx'
-
Surface Lower Part I| Upper Part
¢ Integration | -0 Sx! £ -xp, ¥, <% <0 ; 0 <x'< xpy, Xm<x' £w
|
| : - i | +j 3_11
1 First . sin 6 iz . X -jkx! cos 6 ‘ Xm +jkx! cos 8 kasinfe = %
1 Term ; e F(kxy(1+cos8)) 51 jksinbe Vglx', 2m, 2) S. jksinfe
i Rz 1(B) 1 2yl +cos® FY i o J1-cos®
i | dx! i 1 -jkr!
1 . X3 + ,2)}dx!
i “ [ 2e VB(rz¢z )] X F(kxm(l-cos 9))
: | o 7 . ;
| ez e T gine . | J% Sjk(h#x') :
Second g Vg(h, 270, 2) -e ksin® g\"m e p-ikx! cos@ |
, Term i Y1 +cos® \ = . e
' Rza2(9) ‘, 0
{ Khx! !
X F(k 1+ ] J '
(kxm( cos 0)) . h+x' ( ' , 270:2)dx' \
B\nh+x ’
o
Third -eMk sin @ EJk(hHZ)ejkx'cos 3]
ir
Term J_‘l-rrk 0 Jh+rz
Ry3(0)

hr
. hrg
ey, (hrz ) g, z)
e XVB\h+1,

hr , T +ﬂ’z.2)]dx'
* VB(h+rz




The radiation pattern function of the parallel-plate waveguide
(Fig, 1) due to the three terms (Egs. (30), (34) and (36)) are pre-
sented in Table II in the appropriate regions,

Both the magnitude and phase of the first two terms of the
radiation pattern function, as given in Table II, were calculated
for five values of guide width h, ranging from 0,1 to 0, 5\ as shown
in Tables III to VII, The effect of the third term was included for
guide width of 0. 1, 0, 2 and 0,3\, It can be seen that as the guide
width increases the effect of the third term decrecases,

The radiation pattern of the parallel-plate waveguide formu-
lated by the Weiner Hopf technique is given in Appendix B and has
its phase references to the center of the guide aperture, This
phase reference was shifted to the edge of the guide so as to be
the same as that in the surface integration technique,

The radiation patterns were plotted for these five values of
guide width as shown in Figs, 7 to 11, It is noted that for guide
widths of 0, 2 and 0, 3\, thc valucs of the exact radiation pattern
(Weiner Hopf technique) lies in between the surfacc integration
pattern function with and without the third term contribution,

It is believed that the radiation pattern, including the con-
tributions due to subsequent higher order interactions between
the two edges, will be in between the two extremes computed

with and without the third term contribution, The fields on the

26



surface S, due to the higher order interactions, will decrease as
the guide width increases, The maximum error as compared with
the exact solution is approximately five percent in magnitude and
three degrees in phase for guide widths of 0, 2 and 0, 3\, The
radiation pattern for guide widths of 0,4 and 0, 5\ are shown in
Figs, 10 and 11, respectively,

The error is small as compared with the exact solution, It
is noted that the radiation pattern formulated by the surface in-
tegration technique agrees well even for the guide width as small
as 0, 1IN as shown in Fig, 7,

The radiation pattern as analyzed by the wedge diffraction
method? is also given in Figs, 7 to 11, and in Tables III-VII, In
the wedge diffraction method, the pattern is obtained directly
from the sum of the singly and doubly diffracted rays in region
y > 0. Based on the comparison, the improvement in accuracy

of the surface integration technique is evident,
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TABLE IIT

Surface Intergation
Theta Weiner-Hopf Double Diffraction Without Third Term | With Third Term
in Mag Phase Mag Phase Mag Phase | Mag Phase
Degrees i
1 1.0 89. 7 1,0 89.7
20 0. 990 83,3 0.995 83,4
40 0.961 76, 4 0.982 76. 8 0.972 72,8 | 0,973 76,7
60 0.919 69, 8 0.964 71,3 0.938 65,6 | 0,942 70.0
80 0.871 63,0 0,938 68, 2 0.898 59,7 | 0.905 64. 1
90 0. 848 61,4 0. 800 44,3 0.878 57.3 | 0.886 61.5
120 0. 785 55, 4 0,763 47,5 0. 823 52,1 | 0,831 55.3
140 0. 755 52.9 0.748 47,6 0. 792 50.1 | 0.798 52.3
160 0. 737 51.3 0.738 47,3 0. 763 48,8 | 0.767 50. 0
180 0. 730 50. 9

Guide Width 0, IX
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TABLE IV

Surface Diffraction

Theta Weiner Hopf Double Diffraction Without Third Term | With Third Term
in Mag Phase Mag Phase Mag Phase | Mag Phase
Degrees
1 1,0 89, 4 1,0 89, 4
20 0.977 76, 2 0,980 76,9
40 0,916 64, 7 0.929 63.5 0.891 63.7 | 0,930 65, 2
60 0. 834 53, 6 0,871 51,3 0. 805 52.6 | 0,848 54,1
80 0. 747 44, 5 0. 833 42,0 0. 720 43,7 | 0,761 45,0
90 0. 706 40, 9 0,619 35.3 0. 682 40,1 | 0, 720 41,4
100 0, 670 37,7 0.599 34,2
120 0. 609 33,0 0, 564 31,7 0. 592 32,6 | 0,618 33,4
140 0. 566 30.0 0.536 29,7 0. 553 29,9 {0,571 30,4
160 0. 542 28,3 0.519 28,5 0,528 28,5 | 0,537 28, 8
180 0. 535 27. 7

Guide Width 0, 21
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TABLE V

€€

| Surface Diffraction
Theta Weiner Hopf Double Diffraction Without Third Term With Third Term
in Mag Phase Mag Phase Mag Phase Mag Phase
Degrees |
1 1.0 89. 1 1.0 89. 1
20 0.964 71,1 0.961 70.9
40 0. 868 54,9 0. 859 52.3 0,851 54,1 | 0,887 53,3
60 0. 746 38. 8 0.737 35,1 0,729 39.9 | 0,761 38.4
80 0. 629 27,7 0, 648 19. 7 0,616 29,0 | 0,643 27.2
90 0.578 23.5 0. 520 23.5 0, 567 24,9 1 0,591 23,1
120 0. 466 15,3 0. 446 17,3 0,461 17,0 | 0,475 15. 4
140 0, 422 12, 7 0.413 14, 8 0.420 14,4 | 0,429 13,1
160 0. 397 11, 3 0. 393 13,5 0. 397 13,2 | 0,401 12,6
180 0. 390 10.9 0. 387

Guide Width 0. 3\
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TABLE VI

Surface Integration
| Theta Weiner Hopf Double Diffraction Without Third Term| With Third Term
in Mag Phase Mag Phase Mag Phase | Mag ' Phase
Degrees
1 Lo 88. 7 1,0 88.7
20 0, 948 65, 2 0,943 65, 2
40 0,817 42,8 0, 797 42.5 0.815 43,8
60 0, 659 26, 0 0.617 23,3 0, 658 26, 7
80 0. 520 12,5 0,463 5.3 0. 529 14, 2
90 0,464 8.0 0,437 10, 6 0, 469 10,1
120 0, 352 2.2 0. 353 3.6 0, 360 2,8
140 0. 312 -0, 6 0,318 1,4 0, 321 0.7
160 0. 291 -1, 4 0. 299 0.3 0, 300 -0.0
180 0. 284 -1, 5

Guide Width 0, 4\
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TABLE VII

Surface Integration

Theta Weiner Hopf Double Diffraction Without Third Term |With Third Term
in Mag Phase | Mag Phase Mag Phase | Mag Phase
Degrees
1 1,0 1,0 88. 4
20 0.931 0,928 59.5
40 0, 762 0, 748 33.2 0.774 33,0
60 0. 573 0.533 13,9 0, 583 12,8
80 0,420 0. 346 0.9 0.435 -0, 4
90 0. 364 0. 357 -2.6 0,376 -4,5
120 0, 261 0.270 -9.0 0,272 -10, 1
140 0, 229 0. 239 -10.4 0. 239 -11, 2
160 0, 213 0,223 -10,9 0. 223 -11, 3
180 0. 209

Guide Width 0, 5\




CHAPTER V
CONCLUSION

In this publication the radiation pattern of the thin-walled
parallel-plate waveguide is analyzed by a surface integration method,
This analysis gives an improvement in the accuracy of the pattern in
the region near the plane of the guide aperture, as compared to con-
ventional wedge diffraction analysis, The comparison is based on
the exact solution given in Appendix B and which is valid for guide
widths from 0 to 0, 5. The radiation pattern obtained by the surface
integration analysis agrees quite well with the exact pattern for
guide widths ranging from 0.1 to 0. 5X, By the nature of the surface
integration analysis, its accuracy increases with guide width,

The surface integration approach may be applied to other dif-
fraction problems as a means of overcoming the limitations of the
wedge diffraction method. Specifically the radiation pattern analysis
presented here may be extended to other waveguide geometries, i, e,,
guides mounted in infinite ground planes and guides with arbitrary

truncation angles,
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APPENDIX A

The two-dimensional problem of the electromagnetic field, in
the neighborhood of a conducting wedge, illuminated by a plane wave,
was first solved by Sommerfeld, ® The solution for a half-plane (zero
wedge angle) was formulated in terms of the Fresnel integral,
Subsequently, Pauli formulated the solution for wedges of arbitrary
angles in which the dominant term is the Fresnel integral giving,

. &
J 4 ,cos—— l

2

1 sin L
- - e
n n

[y

(]

V=

jkpcosd

(37) Va(p, ¢,n) =

™
COs T -COs Q
n

[oo]

X Sl e~3T?dr + [Higher Order Terms]
Jkpa
where
a= 1+ cosdo
and n specifies the wedge angles (2-n) T,
For the half-plane, i.e,, n = 2, the higher order terms of
Eq, (37) are identically zero,
The exact formulation based on an eigenfunction expansion

may be used which converges rapidly for small values of p

@ m
(38)  Vpleem = L Z )™ Tm (kp) cos 2 g
m=0 n
ik cos o<
-4 o
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where Jp, is the cylindrical Bessel function of order m/n and

The solution to the plane wave diffraction, of a wedge with
wedge angle (2-n)w, may be expressed in terms of a scalar function
that represents the component of the electromagnetic field, normal

to the plane of study in Fig., 12,

INCIDENT REFLECTION
PLANE WAVE BOUNDARY
/
/

INCIDENT AND

INCIDENT REFLECTED REGION

REGION

FIELD ‘. SHADOW
POINT \ REGION
\

\
SHADOW BOUNDARY

Fig. 12, Geometry of wedge diffraction,
The total field may be expressed as
(39) U =U, + Uy
For plane wave incidence the geometrical optics fields are

(40) U. = ejkPCOS(ll—’ b)) incident region
o =
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(41) U. = ejkp cos(y-do) | ejkp cos(y -+ )
o

incident and
reflected region

(42) Ug =0 shadow region
The diffracted field is given by

Uq = VB(ps ¥ -Uoin) + Vp(p,§+io,n)

Since only the half-plane is employed in this publication, the
following equations are restricted to n = 2 for simplification.
For large values of kp(l + cos ¢)

-j(kp+ %)
(43)  Vglp, ¢, 2) ~ ==

Z,IZﬂkp cos %’

In terms of this approximation, the radiation may be thought of

as that from a line source at the edge radiating a cylindrical

-jkp
wave of the form K e,/— . This line source concept is an
p

extremely useful means of visualizing edge diffraction. The dif-
fraction of a cylindrical wave by a wedge is illustrated in

Fig, 13,
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Fig, 13. Line source near field diffraction

The geometrical optics field in this case is given by
2 L
-jkR —jk[r7‘+ro -Zl‘roCOS(LJJ—l:UO)]Z
(44) u. =% = ¢ S

o — ) ;5 ]
VR [r try - 2rrycos(y -y ) 1+
incident region
2 1
. 2
-jkR -jkR" —Jk[r2+ro-2rrocos(¢—¢o)]
(45) U, = = + ¢ = £
/R Jr 2, 2 1
R R [r trg -2rrgcos(y —¢o)]

1
e-jk[r2+r§ -2rrg cos(y +yg) 12

+ R 2 1
[ r try - 2rry cos(y + L};o)] 4

incident and reflected
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and

(46) Uy, =0 shadow region

The diffracted field is accurately given by®?

rrg

rro
47 U, = e Ttrogy (__.
(47) d [ B rtrg

/r+r0

-

Va(rreg - ¢t o)
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APPENDIX B

The exact solution for the TEM mode radiation pattern of
the parallel-plate waveguide, as shown in Fig. 1, is obtained by

the Weiner -Hopf technique’ and is given by

™
Sifk __)
e J( ! khLy4 (k) Ly (-k cos 8)

y 2tkp

An expression for Lgy(a) which is valid for 0 < lfzb_ < 7 is given

(48)  Hy(p, ) =

by
( - 1
(49) Ly (@) ={(\%) sinh (\%‘) ’ exp [— 7‘1: oh - i gz—}i-
1 -0.5772 +Jzn(il _ Y o-? (g)
kh 2 k
had
—ingl —Za;l_h; ) ‘l’n}}
where

-1 (o4

Y, = tan {(2%)2 _kz}%

~

For real values of ¢ and k and for -k <a < k we have

(50) a =k cos \

(51) Y = ik sin
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Therefore, the angular variation (with the factor &

,/anp

suppressed) is given by

(53)

(1 . 1 s
s1n(—2— kh sin B) 2 iz

R (0) = kh e

Ll xh sine
2

kh(l - cos 0)
2w

exp[-l kh(l - cos 0) - i

2

{1 - 0.5772+£n(:—:)}- kh 4

2nw

Z (kh(l cos 9)) a-! kh

-1 cos 6 }
+ tan .

2nm z—l
(kh
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